L'E-NERGIE CARBONE/HYDROGĖNE/OXYGĖNE

CAHIER D'ACTEURS

RÉPONSES APPORTÉES AUX QUESTIONS POSÉES PAR LE GL DES SHIFTERS DE PAU

De nombreuses questions posées font l'objet d'accords de confidentialité passés avec les fournisseurs potentiels de technologie, nous n'avons, en conséquence, pas pu répondre à l'ensemble de vos questions. Les équipes d'Elyse Energy ont bien conscience que ces informations techniques vous sont nécessaires pour analyser dans sa globalité les aspects techniques. La concertation préalable se déroulant en amont du dépôt du dossier d'autorisation environnementale, les études sont pour la plupart toujours en cours et les résultats par conséquence indisponibles. Le choix des technologies dépend, par exemple, des études d'impact et ne peut donc être communiqué à ce jour.

Toutefois, Elyse Energy communiquera les études dès leur finalisation. Le site Internet vous permettra de vous tenir informés des éventuelles rencontres organisées avant le dépôt du dossier à la préfecture et de prendre connaissance des derniers éléments téléversés par les équipes.

Efficacités énergétiques

Électrolyseur (HyLacq)
> Technologie: solution aqueuse? PEM ?
Ce choix n'est pas encore fait, nous ne pouvons pas répondre plus précisément.
> Combien d'électrolyseurs et quelle puissance pour chaque ? Quel est le niveau de maturité (TRL) pour des électrolyseurs de cette puissance?

La technologie d'électrolyse est à TRL 8-9 sur les dimensions étudiées dans le projet. Le design de détail n'est pas finalisé (nombre d'électrolyseurs, etc.) mais la puissance totale installée serait en ligne avec la puissance électrique demandée à RTE sur les postes électriques (soit 520MW).
> Efficacité énergétique d'électrolyse (chaleur + électricité)? Information confidentielle.
> Nombre d'heures annuelles de fonctionnement de l'installation?

Les usines fonctionneront sur une base de $\mathbf{8 0 0 0}$ heures par an.
> Consommation électrique totale («stackée») en $\mathrm{kWh} / \mathrm{kg} \mathrm{H}_{2}$? Information confidentielle.
$>$ Consommation de chaleur en $\mathrm{kWh} / \mathrm{kg} \mathrm{H}_{2}$? Information confidentielle.
> Quel pré-traitement pour l'eau utilisée comme intrant de l'électrolyseur ?
Deux variantes existent pour le pré-traitement de l'eau industrielle avant son utilisation comme intrant de l'électrolyseur : la technique membranaire (osmose inverse) et la technique d'échangeuse d'ions. Les études permettront de confirmer la technique la plus adéquate pour le projet.
> Énergie nécessaire (électrique et/ou thermique) pour ce prétraitement en kWh élec et ou thermique $/ \mathrm{m}^{3}$ eau) ? Information confidentielle.
$>$ Taux de compression mélange gazeux $\left(\mathrm{H}_{2}+\mathrm{O}_{2}+\right.$ vapeur $\left.\mathrm{H}_{2} \mathrm{O}\right)$ pour purification et séchage H_{2} ? Information confidentielle.
> Les $580 \mathrm{kT} / \mathrm{an}$ d'O2 produits par HyLacq sont partiellement valorisées comme entrants ($180 \mathrm{kT} / \mathrm{an}$) sur BioTJet. Que deviennent les $400 \mathrm{kT} / \mathrm{an}$ excédentaires? II pourrait être intéressant d'évaluer la conversion d'une chaudière en chaudière oxycombustion. Dans le procédé d'oxycombustion, c'est en effet la première étape de séparation et obtention d’O2 qui est la plus énergivore. HyLacq devient une source de production d'O2...

Elyse Energy évalue les opportunités de valorisation de cet oxygène excédentaire coproduit. Le projet d'oxycombustion est susceptible d'être porté dans le cadre du projet ZIBAC. Le contenu de cette étude reste peu / très peu diffusé pour le moment sur le territoire. C'est une optimisation de procédé sur lequel Elyse

Energy travaille et espère pouvoir communiquer quand celle-ci sera finalisée.
> Est-ce que les 400000 tonnes d'oxygène excédentaires, et consommant une part importante de l'énergie de l'électrolyse (environ 53\%), sont comptabilisés dans le bilan GES des deux procédés ?

Oui, elles sont comptabilisées.
> Chaleur fatale: quantité d'énergie, température et pression? Réutilisation?
Lorsqu'il y a production de chaleur fatale dans le procédé, Elyse Energy évalue la possibilité de la valoriser, directement dans ses procédés par intégration thermique, ou auprès d'autres industriels.
> Quelle est la répartition de l'énergie électrique entre les 3 composantes du projet (Hylacq, EM Lacq et BioTjet) ?

HyLacq représente la majorité de la consommation d'électricité, du fait de la production d'hydrogène.

E-méthanol (eM-Lacq)

> Pression et température d'entrée de H_{2} ? Information confidentielle.
$>$ Pression et température d'entrée du CO_{2} ? Information confidentielle.
> Pression et température d'entrée de la vapeur d'eau? Information confidentielle.
> Origine de l'énergie pour produire cette vapeur d'eau sur la plateforme de Lacq?

Les choix technologiques ne sont pas encore faits. L'empreinte carbone de la production de chaleur fera partie des critères de choix.
> Est-ce que les $280 \mathrm{kT} /$ an de CO_{2} entrant sont 100% biogéniques? BioTJet n'en produira que $90 \mathrm{kT} / \mathrm{an}$. Quelles sources envisagées aujourd'hui pour les 190 kT /an manquants: les 175 kT de Bio Béarn, les 70 kT de la centrale Pegaze?

Les 280000 tonnes entrantes seront biogéniques et proviendront de divers acteurs locaux opérant sur le secteur.
> Nombre d'heures annuelles de fonctionnement de l'installation?
Les usines fonctionneront sur une base de $\mathbf{8 0 0 0}$ heures par an.
> Consommation d'énergie électrique annuelle en GWh ?
Cette consommation dépendrait du fournisseur de technologie finalement retenue. Production d'hydrogène exclue (car sur le site HyLacq), cette consommation serait de l'ordre de 100GWh/an pour les 200000 tonnes de eméthanol produites. La consommation d'électricité du captage de CO_{2} et de la méthanolation sont inclues dans ce chiffre.
> > Efficacité énergétique de l'installation Eout/Ein où E est la quantité d'énergie en sortie (Eout) et en entrée (Ein)?

Ce résultat dépendra des technologies finalement retenues pour le captage de CO_{2} et pour la méthanolation, qui consomment de l'énergie sous forme de chaleur et d'électricité. Ceci dit, le rendement serait de l'ordre de 40% d'après nos hypothèses de travail actuel. Ce chiffre dépend très largement du rendement de la production d'hydrogène, la principale source d'énergie de la molécule finale, qui est de l'ordre de 55%. Ce chiffre correspond au rendement global de la production de e-méthanol et intègre donc une partie de l'installation d'électrolyse du site de HyLacq.
> > Quel est le TRL des techniques qui seront utilisées pour capter le CO_{2} et CO dans les fumées des chaudières?

Seul le CO_{2} serait capté pour les besoins de la synthèse de e-méthanol. Les technologies aux amines, qu’Elyse Energy étudie pour ses projets, sont par exemple à un niveau TRL9.

E-bio kérosène (BioTJet)

> Quel est le rendement de conversion de la biomasse dans BioTJet?

Nous ne sommes pas sûrs d'avoir compris votre question, aussi nous supposons que vous faites référence au rendement de conversion du carbone de la biomasse. Grâce à l'adjonction d'H2 électrolytique au syngas issu de la gazéification, 74 \% du carbone de la biomasse se retrouve dans les produits pétroliers valorisables en sortie de procédé. Le captage de CO_{2} de la gazéification permettant de réutiliser ce CO_{2} dans le e-méthanol porte ce taux d'utilisation du carbone de la biomasse à 88%. Enfin, le captage et la valorisation du carbone de la torréfaction porterait ce taux à 99% (la torréfaction utiliserait du gaz issu de la synthèse FischerTropsch).
$>$ Quels KPI avez-vous définis pour l'utilisation de la biomasse? Tonne de CO_{2} émis / tonne de biomasse importée par exemple, teneur en carbone, teneur en eau...

L'ACV de notre production fera partie des KPI principaux. Nous retrouverons également des KPI usuels permettant d'assurer le pilotage d'une usine. Les KPI relatifs à la biomasse seront liés à nos stratégies d'approvisionnement mais ces indicateurs ne sont pas encore définis.
$>$ Origine et quantité de chaleur utilisée pour torréfier la biomasse?
L'énergie utilisée pour torréfier la biomasse vient du procédé lui-même, par recyclage de gaz produits par le procédé.

```
> Les étapes de séchage et torréfaction sont-elles consommatrices
    d'électricité et/ou chaleur?
```

Elles sont principalement consommatrices de chaleur, mais aussi d'électricité pour broyer la biomasse.
> Origine (biomasse, combustible fossile, électrique) et quantité de chaleur utilisée ?

L'énergie utilisée pour torréfier la biomasse vient du procédé lui-même, par recyclage de gaz produits par le procédé. La quantité de chaleur nécessaire dépendra du taux d'humidité réel de la biomasse utilisée.
$>$ Si la combustion de biomasse ou de fossiles émettent du CO_{2}, ce CO_{2} sera-t-il capté ?

Potentiellement, oui, selon les caractéristiques des fumées. Pour rappel, le
procédé de production de biokérosène n'est pas un procédé de combustion mais de gazéification.
> Quel est le procédé de torréfaction utilisé, explosion à la vapeur ? Quelle maturité pour cette technologie?

Information confidentielle.
> Quelle valorisation / exutoire des cendres produites par le procédé de torréfaction ? Y a-t-il d'autres sources de cendres (chaudières biomasse)?

Cette question est à l'étude actuellement. Toutefois, parmi les sous-produits, sont aussi compris les éléments inertes intrinsèques à la biomasse qui vont être extraits en sortie du gazéifieur dénommés "slags" que l'on pourrait assimiler à des cendres vitrifiées. On parle, selon nos projections, d'une dizaine de milliers de tonnes sur lesquelles nous explorons plusieurs voies de valorisation. La revalorisation matière étant, si elle est techniquement et réglementairement possible, favorisée. D'ici au dépôt du DDAE, l'objectif est, par ailleurs, de valider les filières dédiées au recyclage de ces sous-produits. II est encore prématuré pour nous de nous prononcer quant à la pertinence d'une chaudière biomasse sur site.
$>$ Bilan carbone et consommation énergétique liés à la récolte et au transport
de la biomasse, en fonction du type de biomasse, du mode de transport et
du lieu de collecte ? Quelles sont les hypothèses, consommation de
carburant à l'hectare ou au m^{3} de bois, masse volumique du bois sur pied,
masse volumique du bois en vrac, prises pour effectuer le bilan?

Des valeurs standard fournies par la réglementation peuvent être prises pour le calcul réglementaire. En alternative, des valeurs réelles pourraient servir. Enfin, les valeurs de la base de données Ecolnvent pourraient aussi être utilisées pour des études ACV classiques. Nos études sont aujourd'hui faites à partir de ces deux types de données.

$>$ Pression et température d'entrée de H_{2} ?

Information confidentielle.
$>$ Pression et température d'entrée O_{2} ?
Information confidentielle.
> Nombre d'heures annuelles de fonctionnement de l'installation?
Les usines fonctionneront sur une base de 8000 heures par an.
> Consommation d'énergie électrique annuelle en GWh ?
Information confidentielle.
$>$ Pression et température de sortie CO_{2} ?
Information confidentielle.
> Température de sortie du e-biokérosène et e-bionaphta?
Information confidentielle.
> Efficacité énergétique de l'installation Eout/Ein où E est la quantité d'énergie en sortie (Eout) et en entrée (Ein)?

Nos évaluations aboutissent à un résultat de 40% de rendement pour le procédé e-biokérosène, tenant bien entendu compte de la production d'hydrogène.
> Chaleur fatale: quantité d'énergie, température et pression? Réutilisation?
Lorsqu'il y a production de chaleur fatale dans le procédé, Elyse Energy évalue la possibilité de la valoriser, directement dans ses procédés par intégration thermique, ou auprès d'autres industriels.

Globale E-CHO

> Valeur citée lors du petit déjeuner thématique suite à question du GL: 45 à 50%. Quelle est l'efficacité énergétique de l'ensemble Hylacq + eM-Lacq + BioTJet?

Les chiffres sont indiqués dans les rêponses précédentes pour chaque procédé plutôt que pour les sites.
> Quelle est l'efficacité énergétique sur l'ensemble du cycle de vie (intégrant la récolte de biomasse, la fourniture de vapeur et de chaleur, la réutilisation éventuelle de la chaleur produite en excès, la captation de $\mathrm{CO}<2$ extérieurs)?

Nous n'avons pas fait ce calcul. Toutefois, d'après Ecolnvent, la production d'une tonne sèche de buches de bois consomme 3.3 MJ de diesel. La récolte de biomasse pour le projet représenterait donc 275 MWh de diesel. Cela est minime (en ordre de grandeur) par rapport à la consommation d'énergie de l'électrolyse. Aussi, sans faire le calcul complet, nous sommes d'avis de considérer que le rendement global « du puits au réservoir »s serait de l'ordre de 40 \% pour le projet E-CHO.
> Consommation électrique: La consommation sera de 520 MW ce qui représente une puissance relativement importante. Ce besoin électrique va rentrer en compétition avec les besoins électriques pour la mobilité, les pompes à chaleur, la conversion électrique des systèmes de production de chaleur, la production d’hydrogène... Des études récentes montrent que le «Power to Chemicals» est moins efficace que le «Power to Mobility», «Power to heat». De plus, dans ces procédés «Power to Chemicals», le besoin de biomasse peut être diminué en augmentant l'apport électrique. Y a-t-il une législation actuelle ou à venir pour prioriser l'usage de l'électricité et de la biomasse ? Dit autrement, le «Power to chemicals» est aujourd'hui encouragé, le restera-t-il dans un monde en tension sur l'électricité et la biomasse?

La réglementation REDIII fournit une hiérarchie à l'utilisation de la biomasse, la biomasse énergie arrivant après les usages bois d'œuvre et industrie selon le principe dit "de cascade". Pour l'électricité, il n'y a pas, à notre connaissance, de législation actuelle ni à venir. Le Secrétariat Général à la Planification Écologique (SGPE), notamment, travaille sur ces questions de bouclage énergétique dans le cadre des travaux préparatoires à l'établissement de la Stratégie Française Energie Climat (SFEC), de la Stratégie Nationale Bas-Carbone (SNBC) et des programmations pluriannuelles de l'énergie pour anticiper les problèmes éventuels. Ces questions sont éminemment complexes, et l'efficacité est un des critères à prendre en compte.

Questions complémentaires sur la biomasse

1. Plusieurs études d'impact sont envisagées: faune / flore / eau. Au vu des résultats récents qui indiquent que la capacité de stockage de CO 2 par les écosystèmes forestiers a été divisée par deux en dix ans, il semble important de mettre en place une étude de l'impact des prélèvements biomasse sur la capacité de séquestration du système forestier prélevé pour alimenter BioTJet.

L'étude d'impact du plan d'approvisionnement en biomasse est prévue, et nécessairement indispensable pour le dépôt du dossier d'autorisation environnementale.
2. La biomasse utilisée ne sera pas en compétition avec les usages alimentaires, elle le sera cependant avec de nombreux procédés industriels. Existe-t-il une législation qui définit les priorités d'utilisation? L'application production de SAFT est-elle prioritaire, le sera et le restera-t-elle?

La réglementation REDIII fournit une hiérarchie à l'utilisation de la biomasse, la biomasse énergie arrivant après les usages bois d'œuvre et industrie. Pour l'électricité, il n'y a pas à notre connaissance de législation actuelle ni à venir. Le SGPE travaille sur ces questions de bouclage énergétique pour anticiper les problèmes éventuels. Ces questions sont éminemment complexes, et l'efficacité est un des critères à prendre en compte.
3. Les digestats des sites de production de biogaz sont-ils utilisables en entrant de BioTJet?

Non puisqu'ils ne contiennent ni carbone, ni hydrogène.
4. Les importations depuis le bassin Méditerranéen se feront elles par bateau (cf. p. 74). Les échanges Bayonne - BioTJet se feront ils ensuite par train?

La logistique est étudiée et les choix seront faits après des analyses multicritères parmi lesquels l'empreinte carbone des transports, mais également la capacité des infrastructures qui seraient mobilisées.
5. Les impacts, logistiques et transport (partie 5) se focalisent sur le bassin de Lacq et principalement sur les flux de véhicules. Or la logistique concerne une zone vaste qui s'étend sur les deux régions Nouvelle Aquitaine et Occitanie. Les émissions supplémentaires de GES résultants du transport de la biomasse et des e-carburants aux niveaux régional et local (Communautés des Communes) ont-elles été évaluées en regard des objectifs de réductions des émissions de GES de ces entités ?

Les émissions dues aux transports de l'ensemble des produits intrants et sortants du projet sont prises en compte dans le bilan carbone des produits. Elles ne sont pas prises en compte d'après nous pour le moment par les communes et les régions.

